One fixed point actions on spheres, I

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic Fixed-Point Sets of Semifree Actions on Spheres

A group action is semifree if it is free away from its fixed-point set. P. A. Smith showed that when a finite group of order q acts semifreely on a sphere, the fixed set is a mod q homology sphere. Conversely, given a mod q homology sphere as a subset of a sphere, one may try to construct a group action on the sphere fixing the subset. The converse question was first systematically studied by J...

متن کامل

Group Actions on Spheres with Rank One Isotropy

Let G be a rank two finite group, and let H denote the family of all rank one p-subgroups of G, for which rankp(G) = 2. We show that a rank two finite group G which satisfies certain group-theoretic conditions admits a finite G-CW-complex X ' S with isotropy in H, whose fixed sets are homotopy spheres.

متن کامل

Group Actions on Spheres with Rank One Prime Power Isotropy

We show that a rank two finite group G admits a finite G-CW-complex X ' S with rank one prime power isotropy if and only if G does not p′-involve Qd(p) for any odd prime p. This follows from a more general theorem which allows us to construct a finite G-CW-complex by gluing together a given G-invariant family of representations defined on the Sylow subgroups of G.

متن کامل

Fixed Point Formulas and Loop Group Actions

In this paper we present a new fixed point formula associated with loop group actions on infinite dimensional manifolds. This formula provides information for certain infinite dimensional situations similarly as the well known Atiyah-BottSegal-Singer’s formula does in finite dimension. A generalization of the latter to orbifolds will be used as an intermediate step. There exist extensive litera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1982

ISSN: 0001-8708

DOI: 10.1016/0001-8708(82)90052-4